
 

Version 1.1 

 

  



Contents 
REVISION HISTORY .......................................................................................................................................... 3 

Kinematic Controller ......................................................................................................................................... 3 

Software Triggering .................................................................................................................................. 3 

Hardware Triggering ................................................................................................................................. 3 

Configuring a Motion ................................................................................................................................ 4 

IrisControls4™  Pages ....................................................................................................................................... 5 

Position ....................................................................................................................................................... 5 

Kinematic .................................................................................................................................................... 5 

Configuring the Kinematic Controller Over Modbus ................................................................................... 6 

Example of QModMaster Setup ................................................................................................................. 6 

Example Set up Using Hercules ................................................................................................................. 7 

CRC Bytes ....................................................................................................................................................... 7 

Relevant Registers ........................................................................................................................................ 7 

Reading a Register ........................................................................................................................................ 8 

Setting the Number of Kinematic Motions ............................................................................................... 8 

Setting the Target Positions........................................................................................................................ 8 

Setting the Motion Duration ........................................................................................................................ 9 

Setting the Chain Delay ................................................................................................................................ 9 

Enabling Chaining and Setting the Motion Type ..................................................................................... 9 

Configuring an Entire Motion in a Single Frame ...................................................................................... 9 

Saving Kinematic Configurations ............................................................................................................ 10 

Enabling and Disabling Kinematic Mode ............................................................................................... 10 

Triggering a Kinematic Motion ................................................................................................................ 10 

Clear Errors .................................................................................................................................................. 10 

Enabling Hardware Triggering ................................................................................................................. 10 

Troubleshooting ............................................................................................................................................. 11 

Messages not being received: ............................................................................................................. 11 

Motor not moving: ................................................................................................................................. 11 

Motor is overshooting position targets: ............................................................................................. 11 

 



REVISION HISTORY  

1.0 November, 2022 rm, sj Initial Release 
1.1 March, 2023 rm, ab Additional Examples, formatting, troubleshooting 

section. Indicating which features are 6.1.6. 
Formatting 

Kinematic Controller 
Orca Series motors are equipped with a kinematic controller that provides motion profiles which 

allow movement to a shaft position over a specified period while respecting the chosen kinematic 

constraints. Types of kinematic motions available on the Orca Series include: 

• 0 - Minimum power (linear acceleration). 
• 1 - Maximum smoothness (minimum jerk). 

• 2 - Minimum power (linear acceleration assuming 0 initial velocity). (6.1.6) 

• 3 - Maximum smoothness (minimum jerk assuming 0 initial velocity). (6.1.6) 

Up to 32 motions can be saved to a single Orca Series motor. Motions are configured either from 

the kinematic GUI page, or through direct writes to the motor’s memory map.  Motions can be 

initiated either by MODBUS messages, or by hardware edge detection. 

Kinematic controller options are configured using the KIN_CONFIG register. This register controls 

the number of configured motions, as well as the motion triggering mechanism. 

KIN_CONFIG Reserved TRIG_PERIOD HW_TRIG NUM_MOTIONS 

 

The NUM_MOTIONS field counts from 0b00000, indicating 1 configured motion, up to 0b11111 

indicating 32 configured motions. 

Software Triggering 
When the KIN_CONFIG[HW_TRIG] bit is cleared, motions will be initiated by writing the desired 

motion number to the KIN_SW_TRIG[MOTION_ID] field.  This register will be set to 0x1000 initially 

and will return to 0x1000 after processing a software trigger request. Software triggers of 

motions with a number higher than the value configured in KIN_CONFIG[NUM_MOTIONS] will be 

ignored. 

KIN_SW_TRIG Reserved MOTION_ID 
 

Hardware Triggering 
When the KIN_CONFIG[HW_TRIG] bit is set, motions will be initiated by driving the RX2- pin on the 

RJ45 connector (pin 2) at a voltage at least 200 mV higher than the RX2+ pin (pin 1). The voltage 

difference must be held constant for the time specified in KIN_CONFIG[TRIG_PERIOD] before 

being released. If the appropriate amount of time was elapsed between edges, a hardware event 

will be triggered. 



0b00 0 ms 
0b01 10 ms 
0b10 50 ms 
0b11 100 ms 
 

If the TRIG_PERIOD field is changed, the kinematic configuration must be saved, and the motor 

must be power cycled to take effect. 

A single hardware trigger event will queue a single motion, and any further motions that are 

chained together, up to the number stored in KIN_CONFIG[NUM_MOTIONS]. Once the final motion 

has completed, the next motion queued will be motion ID 0.  

WARNING! Enabling hardware triggering will disable MODBUS communications. 

Configuring a Motion 
Individual kinematic motions consist of five variables: 

• Motion target position (µm). 

• Motion period (ms). 

• Motion type (minimum power or maximum smoothness). 

• Chain delay (delay in ms before triggering next motion if chain is enabled). 
• Chain trigger (start next consecutive motion after this one). 

 

The kinematic GUI page provides an interface for programming each of the motions, or the 

motions can be written directly to the memory map. A single motion configuration takes up six 

consecutive registers in the memory map, totaling 192 registers allocated for the motions 

(KIN_MOTION_0 to KIN_MOTION_31). The layout of each set of these registers is shown in table 

2. 

0 Position Target (Low 16 bits) 
1 Position Target (High 16 bits) 
2 Settling Time (Low 16 bits) 
3 Settling Time (High 16 bits) 
4 Chain Delay 
5 Type & Chain 
 

The motion type and chain trigger options occupy the same register with the following structure. 

KIN_MOTION_# + 5 Reserved 

Type 
00 = min. power 
01 = min. jerk 
02 = min. power (Vinit = 0) (6.1.6) 
03 = min. jerk (Vinit = 0) (6.1.6) 

 
Chain 



 

The Type field is interpreted as a 2-bit binary number indicating motion type.  

The Chain bit value is 1 when the chain feature is enabled and 0 when it is disabled.  

 

IrisControls4™ Pages 

Position 
 

 

Kinematic 

 

 

 



Configuring the Kinematic Controller Over Modbus  
For full details regarding the MODBUS message framing see the Orca Series MODBUS User 

Guide, with can be found at https://irisdynamics.com/downloads  

The general format of messages is: 

Server Address | Message Type | Start Address | Data | CRC  

Example of QModMaster Setup 

In the following sections examples of messages being sent using the QModMaster program 

which automatically calculates the CRC bytes. It can be found for free download here 

https://download.cnet.com/QModMaster/3000-2085_4-75819467.html. The setting can be 

configured as follows using your RS422 COM port. 

             

The slave address, function code, start address, and number of registers are all configured from 

the GUI and the frame at the bottom is only needed 

 

 

 

 

https://irisdynamics.com/downloads
https://download.cnet.com/QModMaster/3000-2085_4-75819467.html


Example Set up Using Hercules 

If using a different program such as Hercules the following set up can be used: 

 

CRC Bytes 

The CRC value is calculated based on the previous bytes in the message. When the bytes of the 

message are changed the CRC value will change, every time the same message is sent the CRC 

value will remain the same. 

The CRC bytes can be calculated using online tools such as 

http://www.sunshine2k.de/coding/javascript/crc/crc_js.html 

The polynomial used for generating the 16-bit CRC value for MODBUS communications is 

specified to be 0xA001. 

MODBUS protocol specifies sending the lower CRC byte first followed by the high byte.  

Relevant Registers 

Registers addresses of interest are shown in the table below. 

CTRL_REG_2 2 For saving configurations 

CTRL_REG_3 3 To change the mode 

KIN_SW_TRIG 9 Trigger specific motions, or chains of motions 

KIN_CONFIG 779 Set the number of motions  

KIN_MOTION_0 780 
Series of 6 consecutive registers to configure the 
position, time, type, delay, and chaining of motion 0 

KIN_MOTION_1 786 
Series of 6 consecutive registers to configure the 
position, time, type, delay, and chaining of motion 1 

KIN_MOTION_n 780 + 6n 
Series of 6 consecutive registers to configure the 
position, time, type, delay, and chaining of motion n 

 

http://www.sunshine2k.de/coding/javascript/crc/crc_js.html


Reading a Register 

A good way to test that the MODBUS frames are being formatted correctly and that the correct 

port is being used is to read a register such as the voltage register (Address 338). This will return 

the voltage supplied to the motor in mV. 

Send Message:  

01 03 01 52 00 01 24 27 

Server Addr Read Code Start Address (338) Number of Registers CRC Low CRC High 

Received Message: (Will differ depending on voltage to motor) 

01 03 02 5F AD 40 09 
Server Addr Read Code # Data Bytes Register Value (24493) CRC Low CRC High 

 

Setting the Number of Kinematic Motions 

Choose the number of motions you are going to configure. Each motion configured describes a 

single movement to the specified position. For example, reciprocating back and forth between 

two positions requires two configured motions. Writing a 1 will indicate two motions. 

 

Use a write single register MODBUS message to write the # of motions – 1 to the KIN_CONFIG 

register (779). 

Set 2 motions:  01 06 03 0B 00 01 39 8C 

Set 4 motions:  01 06 03 0B 00 03 B8 4D 

Set 16 motions: 01 06 03 0B 00 0F B8 48 

 

Setting the Target Positions 

The position is commanded in micrometers (µm) and uses 32 bits. It is split into two 16-bit 

registers using little endian, so the low byte is written first.   

120000 = 0x0001 0xD4C0 

KIN_MOTION_0 + 0 = 0xD4C0 

KIN_MOTION_0 + 1 = 0x0001 

Write multiple registers function code must be used to write to both registers at once. Motions 0 

is configured using registers 780 – 785. Motion 1 configuration start at register 786 – 791 

Write position 120000 µm to Motion 0: 01 10 03 0C 00 02 04 D4 C0 00 01 1F 06 

Write position 120000 µm to Motion 1: 01 10 03 12 00 02 04 D4 C0 00 01 9F 86  

Write position 50000 µm to Motion 1:  01 10 03 12 00 02 04 C3 50 00 00 5B DF 



Setting the Motion Duration 

The time it takes to reach the specified position is specified in milliseconds (ms) and uses 32 bits. 

It is split into two 16-bit registers with the low byte written first. 

Write time 1000 ms to Motion 0:  01 10 03 0E 00 02 04 03 E8 00 00 E6 A3 

Write time 10000 ms to Motion 3:  01 10 03 1A 00 02 04 27 10 00 00 6D 5D 

If setting a time less than 65535 this can also be accomplished with a write single register frame. 

Write time 1000 ms to Motion 0:  01 06 03 14 03 E8 C9 34   

 

Setting the Chain Delay 

The next byte is the delay between chained motions which is also in milliseconds (ms) but is a 

single 16 bit register. If motions are not chained the delay is ignored. 

Write delay 100 ms after Motion 0:  01 06 03 10 00 64 89 A0 

Write delay 500 ms after Motion 1:  01 06 03 16 01 F4 68 5D 

Write delay 2000 ms after Motion 1:   

 

Enabling Chaining and Setting the Motion Type 

The type and chain values are both written to the same 16-bit register. The lowest byte enables or 

disables the chain and the next two bits. If a continuous motion loop is desired, all motions 

should be chained and the number of motions must match the number of chained motions. 

Enable chain, type 0 for Motion 0:  01 06 03 11 00 01 18 4B 

Disable chain, type 3 for Motion 0:  01 06 03 11 00 06 59 89 

Enable chain, type 2 for Motion 4:  01 06 03 29 00 05 98 45   

Configuring an Entire Motion in a Single Frame 

It is also possible to set all configurations in a single message.  

Motion 0 to move to 120000 µm over 300 ms, delay for 50 ms and chain to motion 1: 

01 10 03 0C 00 06 0C D4 C0 00 01 01 2C 00 00 00 32 00 01 71 C1 

Repeat this process for each motion you want to configure. For this example, another motion 

command will be given.  

Motion 1 to move to 10000 µm over 500 ms, delay for 0 ms and stop without chaining: 

01 10 03 12 00 06 0C 27 10 00 00 01 F4 00 00 00 00 00 00 22 3D 

Motion 2 to move to 50000 µm over 150 ms, delay for 1000 ms and chain to motion 3: 

01 10 03 18 00 06 0C C3 50 00 00 00 96 00 00 03 E8 00 01 41 D0 



Saving Kinematic Configurations 

If the configuration is complete, save the kinematic controller settings to permanent memory by 

writing the motion_config_save_flag (0x80) to CTRL_REG_2. 

Use the write single register MODBUS command to write the save flag. 

Save kinematic configuration:  01 06 00 02 00 80 29 AA 

After configuration your motions will now be retained through power cycling. They can be 

triggered through the KIN_SW_TRIGGER at any time when kinematic mode is enabled, provided 

the motor has been placed into kinematic mode. 

Enabling and Disabling Kinematic Mode 

Entering and leaving kinematic mode is done by writing to control register 3. Kinematic mode is 

mode 5. Sleep mode is mode 1, it will disable kinematic motions and put the motor into a 

damping state.  

Enter Kinematic Mode:  01 06 00 03 00 05 B9 C9 

Enter Sleep Mode:   01 06 00 03 00 00 79 CA 

 

Triggering a Kinematic Motion 

Trigger your motions using the software trigger register. 

To test the configuration, use a write single register MODBUS message to write the motion ID you 

want to play to the KIN_SW_TRIGGER register. This will also play any chained motions. If all 

motions are chained, entering kinematic mode will automatically trigger the movement sequence. 

Trigger Motion 0:   01 06 00 09 00 00 59 C8 

Trigger Motion 1:   01 06 00 09 00 01 98 08 

Trigger Motion 8:   01 06 00 09 00 08 58 0E   

 

Clear Errors 

Entering sleep mode will clear any motor errors, they can also be cleared by writing by writing 2 to 

CTRL_REG_0. This will keep the motor in the same mode while any clearable errors are removed. 

Clear Errors:    01 06 00 00 00 02 08 0B  

 

Enabling Hardware Triggering 

It is recommended that enabling hardware triggering is performed through the Orca Series GUI 

interface as it disables MODBUS communications. 



Troubleshooting 
With the motor connected to IrisControls4 (see the Orca Series Motor Reference Manual if you 

have not done this step yet). Go to the Modbus page.  

Messages not being received: 

• Bus Message counter is not increasing when a message is sent: 
o Ensure that the com port for the RS422 MODBUS cable is being used for 

communication and that is it connected both the splitter and the computer. 
o Ensure the MOBUS settings are as follows: 
Mode: RTU  Baud: 19200 Data Bits: 8 Stop Bits: 1 Parity: Even 
 

• Bus Message counter is increasing but the Server Message counter is not: 
o Hardware triggering mode must be disabled to communicate over MODBUS. 
o Message improperly formatted. 

Motor not moving: 

• Motor has errors: 
o Any errors can be seen from the Orca’s integrated GUI or by reading register 

ERROR_0 (432). See more details about errors in the Orca Motor Reference 
Manual 

o Errors can be cleared by sending a clear errors command or by putting the motor 
to sleep mode. 

• Position controller tuning not set: 
o The position controller must have at least a maximum force (Fmax) and a P value 

set in order track the target position. These values must both be large enough for 
the controller to reach the target. On the Orca Series GUI’s Position page, the 
target position and the current position of the motor are plotted. 

• Motor is outputting force but staying at one end of its travel: 
o When the motor is powered on it takes its current position as the zero position. As 

the shaft is moved toward the cable end it re-zeros itself. The motor should be at 
the desired zero position when powered on or moved to the desired zero position 
before entering kinematic mode. 

o This will also be the result if the target position is outside the possible range of 
movement. 

Motor is overshooting position targets: 

• Target position on Position page is going past target position values: 
o Motion types 0 and 1 aim to provide minimum power and minimum jerk 

movements while considering the velocity of the shaft. For this reason, if the shaft 
is moving quickly it might overshoot a target position to increase the smoothness 
of the motion. If this is undesirable behaviour, types 2 or 3 can be used which 
always assume a zero initial velocity when calculating motion targets. 

• The target position on the Position page is reaching the correct targets but the motor 
position is not following: 

o The position controller tuner might need to be adjusted to ensure it is using 
adequate force to reach the target position. These can be adjusted through the 
Orca Series GUI or by writing to the corresponding position controller tuning 
registers (See Orca Series Motor Reference Manual). 


