
Orca™ Series Motor with MATLAB
UG230704

Orca™ Series Motor with MATLAB
User Guide 231031

Version 1.1, October 2023

This document applies to the following Orca Series motor firmware:

● 6.1.7

For more recent firmware versions, please download the latest version of this user guide at
https://irisdynamics.com/downloads

CONTENTS
REVISION HISTORY...1
Overview...2
Reading Data from the Motor... 3
Plotting Motor Position... 4
Configuring Position Targets and triggering with Kinematic Mode....................................... 6
Streaming Position Targets in Position Mode.. 8
Using Haptic Effects..10
Increasing Data Rates... 12
Using Actuator Class with Simulink.. 13
Appendix: Actuator Class Methods...14

REVISION HISTORY
Version Date Author Reason
1.0 August, 2023 rm Initial Release
1.1 October, 2023 rm Replace modbus object with serial object, simulink

and haptic examples. Actuator class

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 1
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/downloads
https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

Overview
As part of the Matlab source code package, the “Actuator” class is provided in the “Actuator.m”
file. This object abstracts serial communication to the motor to make it easy to add Orca Series
motor interfacing into new and existing projects. The Actuator class can easily be expanded upon
to include additional functionality as all motor features are available through reading and writing
to registers.

The Matlab source code package, which contains the “Actuator” class as well as multiple
examples is available at irisdynamics.com/downloads.

The Actuator Class makes use of MATLAB’s serialport object to establish and maintain a serial
connection to the Orca Series motor. More information about the MATLAB object can be found
here https://www.mathworks.com/help/matlab/ref/serialport.html.

The serial port will be closed when an object is destroyed. If additional Actuator objects are made
with the same COM port, they will not be able to connect until the other is destroyed.

Each Actuator class method will handle the formatting, sending, receiving and parsing of Modbus
messages to the Orca Series Motor.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 2
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/downloads
https://www.mathworks.com/help/matlab/ref/serialport.html
https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

Reading Data from the Motor
In this step a ‘modbus’ object is created and configured. A simple read command is implemented
to read the Orca Series motor’s error register. The loop is exited when an error is read from the
motor.

When the example is run, a prompt will appear to enter the COM port number of the RS422 to USB
cable connecting to the Orca Series motor.

Note: COM port number can be found in Device Manager.

Figure 1: Prompt to enter motor’s RS422 to USB comport number

read_motor_data.m

clear;

portnum = inputdlg('Enter RS422 COM Port Number:'); % Enter the com port
number used by the RS422 cable

port = strcat("COM", portnum);
orca = Actuator(port, 19200); %COM port of RS422 Modbus channel to Orca Series
Motor and default Modbus baud rate

ERROR_0_address = 432% register contains the active errors of the motor
ERROR_value = 0;
% Loop while reading the error register and break if errors are encountered
while ERROR_0_value == 0

ERROR_0_value = orca.read_register(ERROR_0_address, 1); % Read the value
from the ERROR_0 register

end

fprintf("Program Exited due to Motor Error: %d", ERROR_0_value);

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 3
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

Plotting Motor Position
The motor’s position is stored in micrometers (µm) as an int32 across 2 registers in ‘little-endian’
format. The parsing of this is all handled as part of the Actuator class methods.

Orca motors have custom function codes that allow for multiple pieces of relevant motor
information to be returned in a single frame. While commanding a force, position or other
command, the motor can return position, force, voltage, power, and error information in a single
message allowing for increased data update frequency. The information returned is stored in the
object’s parameters.

Additionally in this step a ‘walking’ plot is added to plot the motor’s position. As the motor’s shaft
is moved, the plot will update.

Figure 2: Motor position plot

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 4
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

plot_motor_position.m

clear;

portnum = inputdlg('Enter RS422 COM Port Number:'); % Enter the com port
number used by the RS422 cable
port = strcat("COM", portnum);
orca = Actuator(port, 19200); %COM port of RS422 Modbus channel to Orca Series
Motor and default Modbus baud rate

% a plot to monitor the position of the shaft
position_plot = figure;
hold on
ylim([0 150]);
num_samples = 200;
x = 1:num_samples;
y = zeros(size(x));
p = plot (x,y);
iteration = 1;
ylabel('Position (mm)');

% Loop while commanding zero force to motor and plotting position
while true

orca.command_orca_force(0); %command 0 newtons to the motor
% Create a 'walking' plot of the data
iteration = iteration + 1;
if iteration <= num_samples

y(iteration) = orca.position/1000.;
else

y = circshift(y, -1);
y(end) = orca.position/1000.;

end
set(p, 'XData',x, 'YData', y)
drawnow

end

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 5
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

Configuring Position Targets and Triggering with Kinematic Mode
Position profiles can be configured by setting various kinematic motions and triggering them. This
will allow for the position targets to be commanded locally on the motor and give a smooth motor
response no matter the frame rate or consistency of commands coming from Matlab. A series of
motions can be configured, chained together as desired and then triggered through (up to 32) or a
single motion can be updated as needed.

In this case we can also make note of the current motion being run on the plot, and trigger a new
motion each time one is finished.

Figure 3: Motor position plot with currently running motion ID

trigger_configure_motion.m

clear;
portnum = inputdlg('Enter RS422 COM Port Number:'); % Enter the com port
number used by the RS422 cable
port = strcat("COM", portnum);
orca = Actuator(port, 19200); %COM port of RS422 Modbus channel to Orca Series
Motor and default Modbus baud rate

% a plot to monitor the position of the shaft
position_plot = figure;
hold on
h = text(10,10,'Active ID','FontSize',14);
ylim([0 150]);
num_samples = 200;
x = 1:num_samples;
y = zeros(size(x));
p = plot (x,y);
iteration = 1;

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 6
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

ylabel('Position (mm)');
%Memory Map addresses of registers to be read
KIN_STATUS_address = 319;
MODE_OF_OPERATION_address = 317;

%Put the motor to sleep to start in a known state and clear any active
%errors
orca.op_mode = 0;
while orca.op_mode ~= orca.SleepMode

orca.change_mode(orca.SleepMode);
orca.op_mode = orca.read_register(MODE_OF_OPERATION_address, 1);

end

%configure a set of kinematic motions with the final motion automatically
%looping to the first
orca.configure_motion(0, 50000, 1000, 200, 1, 0, 0);
orca.configure_motion(1, 80000, 800, 20, 2, 0, 0);
orca.configure_motion(2, 50000, 500, 0, 3, 0, 0);
orca.configure_motion(3, 20000, 300, 0, 0, 0, 1);

%Ensure the motor gets into kinematic mode. This will immediately trigger
%the home motion.
while orca.op_mode ~= orca.KinematicMode

orca.change_mode(orca.KinematicMode);
orca.op_mode = orca.read_register(MODE_OF_OPERATION_address, 1);

end

% Loop while triggering kinematic motions, plotting position and displaying
% currently active motion id
while true

%kinematic status gives the running bit and the active ID
kin_status = orca.read_stream(KIN_STATUS_address, 1); %read the current
state of the kinematic controller
active_id = bitand(kin_status, 0x7FFF);
kin_running = bitand(kin_status, 0x8000);

%When there is no active trigger next
if(kin_running ==0)

orca.kinematic_trigger(active_id + 1);
end
% Create a 'walking' plot of the data
iteration = iteration + 1;
if iteration <= num_samples

y(iteration) = orca.position/1000.;
else

y = circshift(y, -1);
y(end) = orca.position/1000.;

end
set(p, 'XData',x, 'YData', y)
drawnow
h.String = sprintf('Active ID:%d', active_id); %Update text on the
figure with active motion IDs

end

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 7
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

Streaming Position Targets in Position Mode
Alternatively if a specific set of positions is desired, these can be streamed directly to the motor.
The position target in this example is being generated by a sine wave signal. Alternatively the
target could come from a file or be based on information returned from the motor.

Figure 4: Motor position, force and temperature plot

stream_position_targets.m

clear;

portnum = inputdlg('Enter RS422 COM Port Number:'); % Enter the com port
number used by the RS422 cable
port = strcat("COM", portnum);
orca = Actuator(port, 19200); %COM port of RS422 Modbus channel to Orca Series
Motor and default Modbus baud rate

% a plot to monitor the position of the shaft
% also displays motor temperature and force values
position_plot = figure;
hold on
h = text(0,10,'Temp','FontSize',12);
ylim([0 150]);
num_samples = 200;

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 8
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

x = 1:num_samples;
y = zeros(size(x));
r = zeros(size(x));
iteration = 1;
yyaxis left
p = plot (x,y);
ylim([0 150]);
ylabel('Position (mm)');
%create a second axis for Force display
yyaxis right
p1 = plot (x,r);
ylim([-10 10]);
ylabel('Force (N)');

% Memory Map register address
MODE_OF_OPERATION_address = 317;
orca.op_mode = 0;

%Put the motor to sleep to start in a known state and clear any active
%errors
while orca.op_mode ~= orca.SleepMode

orca.change_mode(orca.SleepMode);
orca.op_mode = orca.read_register(MODE_OF_OPERATION_address, 1);

end
%Sine wave parameters
tic;
freq = 0.5;
Amplitude = 30000;
Offset = 50000;
% Loop while streaming a sine wave position target to the motor
%plot motor's position, and force output, display temperature
while true

t = toc;
orca.command_orca_position(Amplitude * sin(t*2*pi*freq)+ Offset);
% Create a 'walking' plot of the data
iteration = iteration + 1;
if iteration <= num_samples

y(iteration) = orca.position/1000.;
r(iteration) = orca.force/1000.;

else
y = circshift(y, -1);
r = circshift(r, -1);
y(end) = orca.position/1000.;
r(end) = orca.force/1000.;

end
set(p, 'XData',x, 'YData', y)
set(p1, 'XData',x, 'YData', r)
drawnow
h.String = sprintf('Temp:%d', orca.temperature);

end

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 9
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

Using Haptic Effects
This example shows how haptic effects can be configured and enabled. In this case there is a
certain zone of the shaft where an additional vibration effect is layed on top of a spring that is
throughout the motion of the shaft.

using_haptic_effects.m

clear;

portnum = inputdlg('Enter RS422 COM Port Number:'); % Enter the com port
number used by the RS422 cable
port = strcat("COM", portnum);
orca = Actuator(port, 19200); %COM port of RS422 Modbus channel to Orca Series
Motor and default Modbus baud rate

%Memory Map addresses of registers
MODE_OF_OPERATION_address = 317;
S0_GAIN_N_MM_address = 644;
O0_GAIN_N_address = 664;
HAPTIC_STATUS_address = 641;

%% configure spring effect
gain = 150;
center = typecast(int32(65000), 'uint16');
coupling = 0;
deadzone = 0;
force_sat = 0;
configuration = [gain center coupling deadzone force_sat];
orca.write_multi_registers(S0_GAIN_N_MM_address, 6, configuration);

%% configure oscillation effect
gain = 10; % Newtons
type = 1; %sine wave
freq = 1000; %dHz
duty = 0;
configuration = [gain type freq duty];
orca.write_multi_registers(O0_GAIN_N_address, 4, configuration);
orca.enable_haptic_effect (orca.Spring0);

while read_register(orca, MODE_OF_OPERATION_address, 1) ~= orca.SleepMode
change_mode(orca, orca.SleepMode); %put the motor to sleep, this will
also clear errors

end

while read_register(orca, MODE_OF_OPERATION_address, 1) ~= orca.HapticMode
change_mode(orca, orca.HapticMode); %put the motor into haptic mode to
start effects

end

%stream a sine wave position target to the motor
%last_position = 0;
quiet_zone = 50000;
haptic_status = 0;

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 10
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

while true
if ((orca.position <= quiet_zone) && (haptic_status ~= orca.Spring0))

orca.enable_haptic_effect (orca.Spring0);
elseif ((orca.position > quiet_zone) && (haptic_status ~=
(orca.Spring0 + orca.Osc0)))
orca.enable_haptic_effect (orca.Spring0 + orca.Osc0);

end
%this is to maintain a stream of data coming from the motor ie,
position, force, temp etc.
haptic_status = orca.read_stream(HAPTIC_STATUS_address, 1);

end

Note that writing multiple registers is being used to configure the effect. The configuration of a
haptic effect can be added as an Actuator class method for easier use.

In Actuator.m

%% Configure Haptic Effect Spring A
function configure_springA(obj, gain, center, coupling, deadzone, force_sat)

center = typecast(int32(center), 'uint16');
configuration = [gain center coupling deadzone force_sat];
write_multi_registers(644, 6, configuration); %write to spring A

configurations
end

In script

orca.configure_springA(150, 65000, 0, 0, 0);

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 11
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

Increasing Data Rates
Orca Series motors are set up to have a configurable
baud rate and inter frame delay. By default these are
19200 bps and 2000 us respectively.

Through the motor’s IrisControls GUI interface on the
Modbus page, these can be increased to 1250000
bps and 0 us.

After saving the Modbus options the motor must be
power cycled.

This change will also require that the Actuator
object’s BaudRate parameter be updated to match
that set on the motor.

% Set up our Modbus client object
portnum = inputdlg('Enter RS422 COM Port Number:'); % Enter the com port
number used by the RS422 cable
port = strcat("COM", portnum);
orca = Actuator(port, 1250000);

To get maximum frame rates, it is also important to lower the Latency Timer from its default of 16
msec to 1 msec.

Figure 5: Adjusting Latency Timer in Device Manager com port settings

Depending on other processing in the loop this can increase the communication rate to up to 800
messages per second.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 12
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

Using Actuator Class with Simulink
Interpreted MATLAB Function blocks can be used to make blocks out of any of the Actuator class
methods.

Figure 6: Simulink Position Control block parameters

Somewhere in the simulation an Actuator object will need to be initialized. In this example it is
done through an InitFcn callback function in the position control block.

Figure 7: Init callback function

The serial port is closed by clearing the object. Ensure there is a stop or close callback function
that clears the Actuator object, or clear during the Init callback.

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 13
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

https://irisdynamics.com/support/

Orca™ Series Motor with MATLAB
UG230704

Appendix: Actuator Class Methods

©2023 Iris Dynamics Ltd.
Go to irisdynamics.com/support to create a support ticket pg. 14
Iris Dynamics Ltd. Victoria, British Columbia T +1 (888) 995-7050 irisdynamics.com

Return Method Parameters Description

obj Actuator com_port
baud_rate

Constructor that opens a serial port at a specified baud rate.

position command_orce_force force_mN Uses the motor command stream function code to send target force
positions. Returns position and updates object’s parameters (position,
force, power, temperature, voltage, errors)

force command_orca_position position_um Uses the motor command stream function code to send target position
values. Returns force sensed and updates object’s parameters
(position, force, power, temperature, voltage, errors)

read_value read_stream register_address
width

Uses the motor read stream function code to read from a specified
register (16 or 32 bit) while also updating object’s parameters (position,
force, power, temperature, voltage, errors)

force write_stream register_address
width
value

Uses the motor write stream function code to write to a specified
register while also updating the object's parameters (position, force,
power, temperature, voltage, errors).
Returns sensed force as an example.

void change_mode mode Write to control register 3 to change the Orca’s mode of operation
(Sleep, Force, Position, Kinematic, Haptic)

void kinematic_trigger motionID Write to the kinematic software trigger register the ID of the motion that
will be triggered (motor must be in kinematic mode to have an effect)

void configure_motion motionID
position
time
delay
nextID
type
autonext

Write to multiple registers that will configure a specified motion ID with
all relevant motion parameters.

void enable_haptic_effect effect_bits Turn on and off specific combinations of haptic effects. Bit flags found
in class properties.

void configure_springA gain
center
coupling
deadzone
force_sat

Configure all parameters relevant to spring A’s haptic behaviour.

void tune_pid_controller saturation
p_gain
i_gain
dv_gain
de_gain

Set the tuning of the motor’s PID position controller.
This controller will be active in Position and Kinematic modes.

void write_register register_address
value

Write a value to a single register

void write_multi_register register_start_add
num_registers
register_data

Write an array of data to a series of consecutive registers.

read_value read_register register_start_add Read a specified number of consecutive registers. Return the value
contained in that register.

https://irisdynamics.com/support/

